拥有捕虫夹的植物中,最出名的莫过于热带植物猪笼草。因其拥有一个独特的吸取营养的器官——捕虫笼而显得与众不同。而今天的主角——囊泡貉藻,是已知利用像颌一样的捕虫夹抓住猎物的唯一水生植物,它曾令查尔斯•达尔文异常着迷。囊泡貉藻顶部的捕虫夹是植物王国中移动最为迅速的附属物之一。当小型无脊椎动物落上去时,它们仅用10毫秒便能将其抓住。而现在,囊泡貉藻已经处于灭绝的危险之中。
首先是栖息地破坏和非法采集,导致过去一个世纪,它的个体密度下降了近90%。而当植物学家们试图利用保护植物的常规方法——种子库,来保护其免受灭绝危险时,却遇到了极大的难题。研究人员在不同条件下将它们储存了1年,以观察其能否发芽。一些种子在超过结冰点的温度下被埋进钢丝网包的土壤中,以模拟自然状态下的种子库。其它种子则在-18℃下被放在密封袋中,以复制人造室内种子库。结果发现,对于被存放在超过结冰点温度下的种子来说,仅有12%在1年后仍能发芽,大多数都受到真菌破坏。这意味着囊泡貉藻保护工作要比建立传统的种子库花费更高,而且在技术上面临着更大风险。
种子活力是反映种子发芽率及萌发所形成植物的健壮度的量化指标,种子活力越高,种子的利用价值则越大。因而提升种子活力检测步骤的效率,在一定程度上可以有效地促进囊泡貉藻种子库建立。2015年,旭月公司取得了名为“一种通过氧气流速判别种子活力的方法”(**号ZL201210462127.6)的发明**,即通过非损伤微测技术(NMT),测量种子O2流速值的大小来判别被测种子的活力,可在保证种子不受破坏性处理的情况下,测量出单独一粒种子的活力。此项检测对种子无损伤,不影响后续使用,有效克服了传统活力检测方法只能得出统计结论而无法给出单粒种子的活力、测量后的种子无法继续使用等缺陷。
图注:不同活力的种子,其不同部位的O2流速。
Xin X, et al. A real-time, non-invasive, micro-optrode technique for detecting seed viability by using oxygen influx. Sci Rep, 2013, 3: 3057.
Li J, et al. The fluxes of H2O2 and O2 can be used to evaluate seed germination and vigor of Caragana korshinskii. Planta, 2014, 239(6): 1363-1373.
想了解更多NMT的科研应用,敬请关注“2016年非损伤微测技术全国巡讲”!
版权所有,转载请注明出处!